Lesson 5.4 Variation

Activity 1 Direct Variation

- **1.** Complete the statements about direct variation.
- **a.** Definition: *y* is **proportional** to *x*, or **varies directly** with *x*, if the ratio $\frac{y}{x}$ is ______.
- **b.** From this fact we can write a formula for *y* in terms of *x*: ______.
- c. Use your answer to (b) to describe the graph of a direct variation:
- **d.** The **constant of variation** is just the ______ of the graph.
- 2. Delbert's credit card statement lists three purchases he made while on a business trip in the midwest. His company's accountant would like to know the sales tax rate on the purchases.

Price of item	18	28	12
Тах	1.17	1.82	0.78
Tax/Price			

- a. Compute the ratio of the tax to the price of each item. Is the tax proportional to the price? What is the tax rate?
- **b.** Express the tax, *T*, as a function of the price, *p*, of the item.
- **c.** Sketch a graph of the function.
- **d.** What is the slope of the graph?

- 3. Look back at the example above to answer the questions.
- a. How can you recognize a direct variation from a table of values?

b. How can you find the constant of variation?

General strategy for variation problems:

- **Step 1** First, use the values given in the problem to find the constant of variation. Then you can write a formula for the function.
- **Step 2** Now use the formula to answer the questions.
- **4.** The weight of an object on the moon varies directly with its weight on earth. A person who weighs 150 pounds on earth would weigh only 24.75 pounds on the moon.
- a. Find a formula that gives the weight m of an object on the moon in terms of its weight w on earth.
- **b.** Complete the table.

w	100	150	200	400
m				

- **c.** Use the table to choose a suitable window and graph your function on your calculator. Sketch the graph in the space above, and label the window settings.
- **d.** How much would a person weigh on the moon if she weighs 120 pounds on earth?
- **e.** A piece of rock weighs 50 pounds on the moon. How much will it weigh back on earth?
- **f.** Label the points on your graph that correspond to your answers for (**d**) and (**e**).

Activity 2 Direct Variation with a Power

- **1.** Complete the statements about direct variation.
- a. The formula for direct variation with a power is
- **b.** From that formula, we see that the ratio ______ is constant.
- c. The graph of a direct variation always passes through ______.
- **2.** At constant acceleration from rest, the distance traveled by a racecar is proportional to the square of the time elapsed. The highest recorded road-tested acceleration is 0 to 60 miles per hour in 3.07 seconds, which produces the following data.

Time (seconds)	2	2.5	3
Distance (feet)	57.32	89.563	128.97
Distance/Time ²			

- **a.** Compute the ratios of the distance traveled to the **square** of the time elapsed. What is the constant of proportionality?
- **b.** Express the distance traveled, *d*, as a function of time in seconds, *t*.
- **c.** Sketch a graph of the function.
- **3.** Look back at the example above to answer the questions.
- **a.** In part (**a**), note that you computed the ratio $\frac{d}{t^2}$ (**not** the ratio $\frac{d}{t}$). Why?

b. What sort of graph do you get in part (**c**)?

- **4.** The faster a car moves, the more difficult it is to stop. The graph shows the distance, *d*, required to stop a car as a function of its velocity, *v*, before the brakes were applied.
- **a.** Find a formula for d as a function of v.
 - Hints: 1) How do you know from the graph that $d = kv^2$ (instead of d = kv)?
 - 2) Use a point on the graph to find the value of *k*, and then write the formula.
- **b.** How fast was the car moving if it took 50 meters to stop?

Activity 3 Inverse Variation

- **1.** Complete the statements about inverse variation.
- **a.** The formula for inverse variation is ______.

b. An inverse variation is an example of a ______ function.

- **c.** The graph of an inverse variation has a ______ at x = 0. **d.** If y varies inversely with x, so that $y = \frac{k}{x}$, what is true about the product of the variables?
- **2.** The marketing department for a paper company is testing wrapping paper rolls in various dimensions to see which shape consumers prefer. All the rolls contain the same amount of wrapping paper.

Width (feet)	2	2.5	3
Length (feet)	12	9.6	8
Length · Width			

- **a.** Compute the product of the length and width for each roll of wrapping paper. What is the constant of inverse proportionality?
- **b.** Express the length, *L*, of the paper as a function of the width, *w*, of the roll.
- **c.** Sketch a graph of the function. Which basic graph does your answer resemble?
- **3.** Ocean temperatures are generally colder at the greater depths. The table shows the temperature of the water as a function of depth.
- **a.** How do you know from the table that this is an inverse variation?
- **b.** Find a formula for *T*, temperature, in terms of *D*, depth.

Depth (m)	Temperature (°C)
100	30
200	15
300	10
400	7.5

c. What is the ocean temperature at a depth of 500 meters?

Wrap-Up

In this Lesson, we worked on the following skills and goals related to functions:

- Recognize direct and inverse variation from a table of values
- Find the constant of variation and write an equation
- Sketch the graph of a direct or inverse variation
- Use scaling in inverse or direct variation

Check Your Understanding

- **1.** How can you recognize direct variation from an equation, a graph, or a table of values?
- **2.** What ratio should you compute to see if y varies directly with x^3 ?
- 3. Is every decreasing function an inverse variation? Explain.
- 4. How do you know that the table in Activity 3 represents inverse variation?